S&A FY03 ANNUAL REVIEW MEETING

In-Situ Real Time Measurements of Melt Constituents

Robert De Saro
Arel Weisberg
Joseph Craparo
Energy Research Company
www.er-co.com

Project Overview

Project description

 Measure the Elemental Concentrations of Aluminum Melts During Processing, In Real-Time

Objectives

- Year 1: Develop laboratory scale LIBS probe for molten aluminum
- Year 2: Develop pilot LIBS probe for molten aluminum
- Year 3: Demonstration and Testing at Aluminum Plant

Overall goal

 Achieve Industry Accepted Accuracies, with Minimal Operator Training, and Minimal Maintenance

Laser Induced Breakdown Spectroscopy

Project Description

A. Measurements Made Within Furnace

B. Measurements Made During Pour

Technical Merit

IOF's Can Use This Technology

- Aluminum Molten
- Aluminum Alloy Separation
- Glass Molten
- Glass Batch and Cullet Sortation
- Steel Molten
- Steel Alloy Separation

Technical Merit

Contributes new information or technology to the S/C community

- Minimize Fluxing Agents Such as Cl and Fl compounds
- Tighter Chemistry Tolerances
- Reduces Processing Time
- Energy Savings
- Production Increase
- Reduction in Waste Material
- New Furnace Designs
- Continuous Data will Allow Change from Batch to Continuous Furnace
- This Information has Never Been Available to Industry Before.

Accomplishments

- LIBS Probe Developed for *In-situ* Analyses of Molten Aluminum and Other Materials
- Melt Composition Accurately Measured at Any Point in the Melt
- For Aluminum, Commercialization Plan Completed
- Licensing Agreement Signed for Overseas and US Market
- Patent Application Filed in US, EU, Canada. Japan Pending.
- Desired Accuracy and Repeatability Achieved Using Calibration Free Techniques.
- User-Friendly Operating Software Completed
- Eye-Safe Certified
- Demonstration At Commonwealth Aluminum Prepared and Will Start End of June.
- First Overseas Sale Made

ERCo LIBS Facility

Mixing Measurements

Results from Multivariate Calibration

	Reported Range - 5 Samples	Average Measurement Error
Na	0-96 ppm	14.71%
AI	99.8%	0.0086%
Si	0.04%-0.06%	7.31%
Fe	0.06%-0.1%	5.35%

Calibration Free Method

- Using Calibration Curves Will Require Molten
 Calibration Standards Due to Matrix Effects
- These Will need to be Replaced After Each Use.
- Difficult to Conduct in Plant Environment

Calibration Free Method Models the Plasma

$$\overline{I_{\lambda}^{ki}} = FC_S A_{ki} \frac{g_k e^{-(E_k/k_B T)}}{U_S(T)}$$

Aluminum Measurements

Hardner Data

	Nominal	Measured	Error
AI	80.5%	79.0%	1.8%
Mn	19.3%	20.6%	6.9%

3003 Alloy Average of 5 Data Sets

	Mn	Cu	AI
Reported	1.28%	0.18%	98.54%
LIBS Meas.	1.33%	0.165%	98.51%
Error	3.9%	9.7%	0.03%

3105 Alloy Average of 5 Data Sets

	Mn	Mg	Si	Al
Reported	0.52%	0.57%	0.02%	98.89%
LIBS Meas.	0.508%	0.568%	0.02%	98.92%
Error	2.3%	0.35%	0.0%	0.03%

5052 Alloy Average of 5 Data Sets

	Cr	Mg	Al
Reported	0.26%	0.18%	98.54%
LIBS Meas.	0.258%	0.165%	98.51%
Error	0.39%	9.7%	0.03%

3004 Alloy Average of 3 Data Sets

	Mg	Mn	Al
Reported	1.15%	1.42%	97.34%
LIBS Meas.	1.13%	1.44%	97.31%
Error	1.7%	1.4%	0.027%

LIBS Measurement Error

Aluminum Calibration Standards – Reported Errors

Steel Measurements

Steel

Molten Glass Data

Element	Range Reported	Of Values	Measured by LIBS	Result	% Outside Range
Si	62.96	61.51	61.01	Good	0.81
Na	29.67	20.72	24.9	Good	
Са	5.36	3.46	4.8	Good	
Mg	2.71	2.42	2.85	Out	5.2
Ва	4.66	0.00	4.79	Out	2.8
Fe	0.04	0.020	0.02	Good	
Sr	0.04	0.00	0.03	Good	
Mn	0.1	0.00	0.08	Good	

Clay Sample

	Computed Concentration	Actual Concentration	Error
Element	(%)	(%)	(%)
Aluminum	50	48	5.0
Iron	0.84	0.91	7.7
Silicon	46.4	49	5.3
Titanium	2.35	2.1	11.9

CF-LIBS Measurement of Various Materials

	Basalt	Limestone	Hematite
SiO ₂	17.93%	0.02%	1.74%
Al ₂ O ₃	9.65%	0.27%	3.52%
Na ₂ O	0.92%		
MgO	48.01%	3.03%	0.11%
CaCO ₃	15.28%	96.7%	0.10%
Fe ₂ O ₃	7.39%	0.01%	94.45%
TiO ₃	0.8%	0.01%	0.09%

Cr Limits of Detection

Measured Limits of Detection (S/N=3)

Element	LIBS Measured Limit (ppm)
Cr	4
Fe	10
Mn	3
Mg	1.4
Cu	60

Limits of Detection by Wein

Element	LOD (ppm)
Li	3
Ве	5
Cr	50
Ni	100
Cu	50
Zn	100
Ga	100

Element	LOD (ppm)
Sr	2
Ag	5
Cd	100
Sn	50
Cs	20
Ва	5
Pb	50

Constraints on Accuracy

Signal to Noise

Metal	Sample 1 Mean Error (%)	Sample 2 Mean Error (%)	Signal/Noise
Al	2.0	1.9	Good
Si	1.8	2.3	Good
Ti	2.8	6.9	Good
Fe	8.5	13.5	Poor

Constraints on Accuracy

- Signal to Noise
- Overlapping Peaks

Overlapping Peaks

Constraints on Accuracy

- Signal to Noise
- Overlapping Peaks
- Self Absorbed Lines
- Inaccurate Elemental Physical Constants
- Template Departure

Probe Material

- SiC Alumina Bonded
- Maximum Service Temperature of 1500 °C

Probe Longevity

- Material Compatibility Test 1426 Hours in Melt without Weight Change
- 134 Hours in Melt with No Damage

Maintenance

- Change Water for Laser and Spectrometer 3 to 6 months
- Replace Flash Lamp Every Two Years or So Requires Service Call
- Service Call Every 6 to 12 Months
- Probe Replacement

Why Concept is Feasible Now

- ERCo has Developed a Probe for Molten Aluminum
- ERCo has Developed Calibration Free Measurements
- Rugged Broadband Spectrometers Are Now Available
- Rugged Lasers Are Now Available
- Funding from DOE

Technical Progress and Outlook

Demonstration at Commonwealth

Industrial End-User Involvement

Aluminum

- Commonwealth
- Century
- Logan

Glass

- PPG
- Fenton
- Kopp
- CertainTeed

Steel

Crucible

Coal

- CQ Inc.
- Ontario Power
- Colorado Springs Utility
- Southern Company

Market Potential

- Commercialization Plan Completed
- Licensee Agreement Signed
- Patents Pending in US, EU, Canada, and soon Japan
- First Overseas Sale Completed

What's Next

- Demonstration at Commonwealth (Aluminum)
- Demonstration at Crucible (Steel)
- Demonstration at PPG (Glass)
- Sales to Al Industry Through Licensee
- Development for Coal

Energy Savings

	Energy Savings by 2010 (Trillion Btu)
Molten Glass	4.2
Molten Aluminum	9.2
Total	13.4

Congressman Fossella (R-NY)

Summary

- LIBS System Proven in Lab
- Calibrationless Technique Development Completed
- Software and Design Allows Single Pushbutton Operation
- Minimal Operator Training Required
- Maintenance Simple
- Patents Pending
- Demonstration at Commonwealth to Start in June
- First Commercial Sale Made